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Motion vs. Stereo: Similarities/Differences

* Both involve solving
e Correspondence: disparities, motion vectors
* Reconstruction

* Motion:

* Uses velocity: consecutive frames must be close to get good
approximate time derivative

* 3d movement between camera and scene not necessarily single 3d rigid
transformation

* Whereas with stereo:
* Could have any disparity value
* View pair separated by a single 3d transformation

Slide taken from Kristen Grauman



Today We Focus on: Optical Flow
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Problem Definition M o
Given two consecutive I(z,y,t) I(z,y,t")

image frames, estimate the

motion of each pixel Estimate the motion

(flow) between these
two consecutive images






Key Assumptions

(unique to optical flow & different from generally estimating two image view transforms!)

Color Constancy

(Brightness constancy for intensity images)

Implication: allows for pixel to pixel comparison
(not image features)

(pixels only move a little bit)

Implication: linearization of the brightness
constancy constraint



Approach
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I(z,y,t) I(z,y,t)

Look for nearby pixels with the

(small motion) (color constancy)



Assumption 1

Brightness constancy

Scene point moving through image sequence




Assumption 1

Brightness constancy
Scene point moving through image sequence




Assumption 1

Brightness constancy

Scene point moving through image sequence
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I(xaya]-) I(x,y,Q) I(a:’y, k:)

Assumption:Brightness of the point will remain the same



Assumption 1

Brightness constancy

Scene point moving through image sequence

-----------------------.) .
................................................... S
g AP
(x(l), y(l))
I(z,y,1) I(z,y,2) T

Assumption:Brightness of the point will remain the same

I(z(t),y(t),t) =C

constant



Assumption 2

Small motion

I(CE,y, t) I(x,y,t+5t)



Assumption 2

Small motion

(x + udt,y + vét)




Assumption 2

Small motion

(x + udt,y + vét)
. /
)

(z,y) (z,y

I(Ll?,y, t) I(xayat—l_ét)

Optical flow (velocities): (u, ’U) Displacement: (5:13, 5y) = (’U,(St,v(st)



Assumption 2

Small motion

(x + udt,y + vét)
(@,9) (@)

I(.’E,y, t) I(xay:t+6t)

Optical flow (velocities): (u, ’U) Displacement: (5:13, 53/) = (uét,vét)

For a really small space-time step. ..
I(xz + udt,y + vét,t + 6t) = I(x,y,t)

... the brightness between two consecutive image
frames is the same



These assumptions yield the ...

—— Brightness Constancy Equation —

dl _0Ide 0OIdy OI _
dt Oxdt Oydt Ot

total derivative partial derivative

0

Equation is not obvious. Where does this come from?



I(x + udt,y + vét,t + 6t) = I(x,y,t)

For small space-time step, brightness of a point is the same



I(x + udt,y + vét,t + 6t) = I(x,y,t)

For small space-time step, brightness of a point is the same

Insight:
If the time step is really small,
we can linearize the intensity function



I(x + udt,y + vét,t + 6t) = I(x,y,t)

| o1 ol |
I(z,y,t) + a—x&c + a—ydy + && = I(z,y,t) ?nsosttiJorrrw]mg small

ol ol ol divide by 4t

%(h T a_yéy T E& =0 take limit &t — 0

a‘[ d_ﬂ? 8‘[ d_y aI - O Brightness Constancy \
Equation

drdt Toydt ot




gd_x + gd_y + ﬂ —0 Brightness
Oz dt Oy dt ot Constancy Equation

I.u+ va +1I; =0 shorthand notation

(x-flow) (y-flow)

VITfU + 1, =0 vector form

(1x2) 2x1)



(putting the math aside for a second...)

What do the terms of the
brightness constancy equation represent?

lyu+1,v+1; =0



(putting the math aside for a second...)

What do the term of the
brightness constancy equation represent?

lyu+1L,v+1; =0

1.7

Image gradients

(at a point p)



(putting the math aside for a second...)

What do the term of the
brightness constancy equation represent?

flow velocities
Iu+@v+h—0

1.7

Image gradients

(at a point p)



(putting the math aside for a second...)

What do the term of the
brightness constancy equation represent?

flow velocities

/

Iu+Iv+h—O

v 1

Image gradients temporal gradient

(at a point p)

How do you compute these terms?



Ixu—l—ly’u—l—It=O

How do you compute ...
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spatial derivative




Ixu—l—lyv—l—lt =0

How do you compute ...

ol ol

=2 I,=+—

or ¢ Oy
spatial derivative

Forward difference
Sobel filter
Derivative-of-Gaussian filter



Ixu—I—va—FIt:O

How do you compute ...

ol | ol
ox Oy ot
spatial derivative temporal derivative

Forward difference
Sobel filter
Derivative-of-Gaussian filter



Ixu—I—va—I—It=O

How do you compute ..
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spatial derivative
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Forward difference
Sobel filter
Derivative-of-Gaussian filter
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temporal derivative

.

J

frame differencing



Frame differencing

t t+1

Rl ]R

(example of a forward difference)

o1
ot

[} Nell Noll Noll Noll o)

[} el ol BNl Noll o)




Example:
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Iyu+Lv+1, =0

How do you compute ...

;9L . _ o1 dz dy ; Ol
= +— 1y = - Uu=— vUv=— t — a,
v Oz Ay dt dt ot
spatial derivative optical flow temporal derivative
Forward difference How do you compute this?  frame differencing
Sobel filter

Derivative-of-Gaussian filter



Iyu+Lv+1, =0

How do you compute ...

I ol I ol dx dy I ol
T — 4o_ YT q. Uu=— V=—]— t — A,
Ox oy dt dt ot
spatial derivative optical flow temporal derivative
Forward difference We need to solve for this! frame differencing
Sobel filter (this is the unknown in the

Derivative-of-Gaussian filter optical flow problem)



Ixu—I—va—I—It=O

How do you compute ...

=9 = dz %y =%
T Oz Y Oy u = E vV = E t ot
spatial derivative optical flow temporal derivative

Forward difference
Sobel filter
Derivative-of-Gaussian filter

Cannot be found uniquely

(u,v)

Solution lies on a line

with a single constraint

frame differencing



Solution lies on a straight line - e

Iyu+I,v+1, =0

many combinations of u and v will satisfy the equality

The solution cannot be determined uniquely with
a single constraint (a single pixel)



unknown

We need at least _____ equations to solve for 2 unknowns.



unknown

L+ L+ 1, =0

S

known

Where do we get more equations (constraints)?



Horn-Schunck
Optical Flow (1981)

brightness constancy
small motion

‘smooth’ flow
(flow can vary from pixel to pixel)

global method
(dense)

Lucas-Kanade
Optical Flow (1981)

method of differences

‘constant’ flow
(flow is constant for all pixels)

local method
(sparse)



Where do we get more equations (constraints)?

Ix’U,—FIy'U—FIt:O

Assume that the surrounding patch (say 5x5) has
‘constant flow’



Assumptions:
Flow is locally smooth

Neighboring pixels have same displacement

Using a 5 x 5 image patch, gives us 25 equations

In General, How
Many Solutions?
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Equivalent to solving:

AT A T A'b
: Z 1.1, Z I,L.Iy il i E 1.1, ]
pEP pEP U | _ _ | pEP
Z Iny Z Iny v Z IyIt
_ pEP pEP i . pEP .

where the summation is over each pixel p in patch P

T — ( AT A) —1 ATb Called “Pseudo Inverse”



When is this solvable?

ATAz = A"b



When is this solvable?
ATAz =A"b

ATA should be invertible

ATA should not be too small

A, and A,should not be too small

ATA should be well conditioned

A /A, should not be too large (A =larger eigenvalue)



Where have you seen this before?

C Y LI, > I.1, 7
P pEP
ATA = |5

| pEP peEP -




Where have you seen this before?

] Z I .1, Z I.1, 7
T _ peEP pEP
_ pEP peEP _

Harris Corner Detector!



Where have you seen this before?

] Z I .1, Z I.1, 7
T _ peEP pEP
_ pEP peEP _

Harris Corner Detector!

What are the implications?



Implications

e Corners are when A1, A2 are big; this is also when Lucas-Kanade
optical flow works best

* Corners are regions with two different directions of gradient (at least)

*Corners are good places to compute flow!

* That is why Lucas-Kanade flow is considered “local/sparse”

What happens when you have no ‘corners’?



You want to compute optical flow.
What happens if the image patch contains only a line?



Horn-Schunck
Optical Flow (1981)

brightness constancy
small motion

‘smooth’ flow
(flow can vary from pixel to pixel)

global method
(dense)

Lucas-Kanade
Optical Flow (1981)

method of differences

‘constant’ flow
(flow is constant for all pixels)

local method
(sparse)



Smoothness

most objects in the world are rigid or
deform elastically
moving together coherently

we expect optical flow fields to be smooth



Key idea

(of Horn-Schunck optical flow)

Enforce
brightness constancy

Enforce
smooth flow field

to compute optical flow



Key idea

(of Horn-Schunck optical flow)

Enforce
brightness constancy

Enforce
smooth flow field

to compute optical flow



Enforce
brightness constancy

Lu+Iwv+1I,=0

For every pixel,

U,V

min Imuij -+ Iy’l)ij + I



Enforce

brightness constancy

Lu+Iwv+1I,=0

min
U,V

For every pixel,

\~ lazy notation for I (%, j)

Ioui; + Lyvi; + I
-1



Key idea

(of Horn-Schunck optical flow)

Enforce
brightness constancy

Enforce
smooth flow field

to compute optical flow



Enforce

Ui, j+1
//
Ui-1,5 | Uij = Uitlj
Ui i1

u-component of flow



Which flow field optimizes the objective? min(ui; — uit1,;)°

small




Key idea

(of Horn-Schunck optical flow)

Enforce
brightness constancy

Enforce
smooth flow field

to compute optical flow

bringing it all together...



Horn-Schunck optical flow

rglgz {Es(i,j) AEd(i,j)}



HS optical flow objective function

Smoothness

. 1
Es(i,5) = 1 (wij — wit1,5)° + (wij — wij+1)° + (Vij — vig1,5)° + (vij — ’Uz',j+1)2}

41 3,7 +1 +1
° *
(w5 — Uit1,5) I(u j = Uij+1) F (vij — Vit1,5) I(v i~ Vij+1)
P P——@ PO PY [ SETTPRETS ) | TETTERTTTT CETPTPEEE ®
Lj J +1,7 — Ly 4] i+1,j —-1,j ] +1,3 =19 J +1
® Y () ([




How do we solve this
minimization problem?

min Es(i,7) + AEa(i, j)
U,V —
(ZV)
Compute partial derivative, derive update equations
(iterative gradient decent!)



Final Algorithm (after some math)

1. Precompute image gradients [, [,
2. Precompute temporal gradients J,

3. Initialize flow field u=0
v=20

4. While not converged

Compute flow field updates for each pixel:

Ia:'akl + Iy"_)kl + It N - Iivﬂ’kl + Iy@kl + It
I, Vgl = Vgt — I,
AL+ 12 4 12 AL+ 12412

Upp = U —

Just 8 lines of code!



Optical flow used for feature tracking on a drone
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